Autoimmune Encephalitis

Yeo Tianrong
Associate Consultant, NNI
Medicine Review Course, 24th July 2016
Disclosures

• Received travel grants from UCB and Merck
Encephalitis

- Inflammation of the brain parenchyma

- Clinical manifestations
 - Confusion, drowsiness
 - Seizures
 - Focal neurological deficits
 - Behavioral and neuropsychiatric symptoms
Infective Encephalitis

Viral
- Herpes simplex virus 1/2
- Varicella zoster virus
- Enterovirus
- Parechovirus
- Adenovirus
- Human herpesvirus-6/7 (<30 years)

Bacterial
- Bacillus anthracis, Bartonella henselae, Chlamydia psittaci,
- Chlamydia trachomatis, Legionella pneumophila, Leptospira spp,
- Listeria monocytogenes, Borrelia burgdorferi,
- Mycoplasma pneumoniae, Mycobacterium tuberculosis,
- Salmonella spp, Streptococcus pneumoniae,
- Streptococcus pyogenes

Rickettsial
- Coxiella burnetii, Rickettsia rickettsii

Parasitic
- Toxoplasma gondii

Fungal
- Histoplasma capsulatum

Autoimmune Encephalitis

- Encephalitis caused by aberrant immune response to self antigen

- Abnormal immune response triggered by tumors, infections, or yet unknown mechanisms

- Diagnosis based on clinical features and often, the identification of specific neuronal autoantibodies in serum/CSF
Why is it important?

- Important differential of infective encephalitis
- Potentially treatable with immunotherapy
- May be paraneoplastic
Autoimmune Encephalitis: Epidemiology

• Multicenter population-based prospective study on encephalitis in England
 – 42 of 203 patients (21%) → etiology was immune mediated
 – 38% of them had neuronal autoantibodies

• California encephalitis project
 – Frequency of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis surpassed that of any individual viral etiology in individuals ≤ 30 yrs old (HSV, VZV, enterovirus)

Gable MS, et al. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis 2012;54:899–904
Autoimmune Encephalitis: Overview

Onconeuronal (intracellular) antibodies

- Phenotype
 - Classical paraneoplastic limbic encephalitis
 - Brainstem encephalitis
 - Encephalomyelitis
- Paraneoplastic
- Severe course, poor response to immunotherapy

Neuronal surface/synaptic antibodies

- Phenotype
 - Limbic encephalitis
- May be paraneoplastic, para/postinfectious, yet unknown mechanisms
- Good response to immunotherapy
Neuronal Surface/Synaptic vs Onconeural Antibodies

Autoimmune Encephalitis: Presentations

• Limbic encephalitis
 – Sub-acute onset
 • Psychiatric symptoms, confusion
 • Short term memory loss
 • Seizures
 – Can have forme fruste presentations

• Less common
 – Epilepsy
 – Rapidly progressive dementia
 – Psychiatric (psychosis, anxiety, depression)
 – Movement disorders (chorea)
Autoimmune Encephalitis: Investigations

- MRI brain
 - Uni/bilateral increased T2/FLAIR signal in the medial temporal lobes without contrast enhancement
 - Multiple cortical-subcortical T2/FLAIR lesions
 - Normal

Autoimmune Encephalitis: Investigations

- **CSF**
 - Lymphocytic pleocytosis milder than viral etiologies
 - Normal glucose levels
 - Normal or mildly increased protein concentration
 - Can be totally normal

- **EEG**
 - Slowing
 - Epileptiform activity
 - Electrographic seizures

The beginnings of a new field....
‘Classical’ Onconeural Antibodies

- Paraneoplastic neurological syndromes
 - Paraneoplastic cerebellar degeneration
 - Paraneoplastic sensory neuronopathy
 - Paraneoplastic encephalitis
 - Limbic
 - Brainstem
 - Encephalomyelitis
 - Paraneoplastic movement disorders
 - Chorea
 - Stiff person syndrome
 - Opsoclonus-myoclonus

Onconeuronal Antibodies: Limbic Encephalitis

Table 1. Antibodies associated with paraneoplastic syndromes

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Neurologic syndrome</th>
<th>Common cancer association</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onconeuronal antibodies<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Hu (ANNA-1)</td>
<td>Encephalomyelitis often with PSN</td>
<td>SCLC</td>
<td>Poor response to treatment</td>
</tr>
<tr>
<td>Anti-CV2/CRMP5</td>
<td>Encephalomyelitis and PSN (may have motor involvement, uveitis, chorea)</td>
<td>SCLC, thymoma</td>
<td>Poor response to treatment</td>
</tr>
<tr>
<td>Anti-Yo (PCA-1)</td>
<td>PCD</td>
<td>Ovary, breast</td>
<td>Poor response to treatment</td>
</tr>
<tr>
<td>Anti-Ri (ANNA-2)</td>
<td>PCD, opsoclonus</td>
<td>Gynecologic, breast</td>
<td>Poor response to treatment</td>
</tr>
<tr>
<td>Anti-Tr/DNER</td>
<td>PCD</td>
<td>Hodgkin’s lymphoma</td>
<td>80% of patients are men <45 years</td>
</tr>
<tr>
<td>Anti-Ma proteins</td>
<td>Limbic, brainstem and hypothalamic encephalitis</td>
<td>Ma2: Men <45 years: germ cell tumors of the testis</td>
<td>About one-third of young men improve with treatment; older patients rarely improve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Ma: men or women with a variety of solid tumors</td>
<td></td>
</tr>
<tr>
<td>Antiamphiphysin</td>
<td>Stiff-person syndrome, encephalomyelitis, PCD</td>
<td>Breast, SCLC</td>
<td>Often improves with treatment</td>
</tr>
<tr>
<td>Anti-GAD</td>
<td>Limbic encephalitis, cerebellar ataxia, stiff-person syndrome</td>
<td>Neuroendocrine</td>
<td>Risk of cancer increases with age, male sex, presence of concurrent neuronal cell-surface antibodies, and limbic encephalitis</td>
</tr>
</tbody>
</table>
Onconeural Antigens

- Antibodies when detected indicate that the disorder is paraneoplastic.
- Antibodies in this group target intracellular neuronal antigens that are also expressed by the cancer.
- Role of antibodies in pathogenesis unclear.
 - Multiple failed attempts to produce an animal model by passive transfer experiments or active vaccination with the antigen strongly suggest these antibodies are not pathogenic.
- Neuronal dysfunction is mediated by cytotoxic T cells irreversible neuronal damage and death → poor response to treatment.

- Onconeural proteins expressed in nucleus, cytoplasm or nucleolus of tumors
- Antigens are also expressed in neural cells
- Antigens displayed on upregulated MHC class-I molecules in a pro-inflammatory cytokine milieu after proteasomal degradation and are then accessible to cytotoxic T cells
Neuronal Surface/Synaptic Antibodies

- Limbic encephalitis or forme fruste
- May be paraneoplastic, para/postinfectious. Most cases → yet unknown mechanisms
- Antibodies target proteins or receptors that reside on the neuronal cell surface/synapses (pathogenic)
- These antibodies mediate neuronal dysfunction by direct interaction with the target antigens → good response to treatment
Neuronal Surface/Synaptic Antibodies

Table:

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Neurologic syndrome</th>
<th>Common cancer association</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-NMDAR</td>
<td>Anti-NMDAR encephalitis</td>
<td>Females >12 and <45 years: ovarian teratoma</td>
<td>Characteristic pattern of symptom progression. Partial syndromes or less severe phenotypes can occur; almost all patients develop several elements of the syndrome.</td>
</tr>
<tr>
<td>Anti-AMPAR</td>
<td>Limbic encephalitis with prominent psychiatric features</td>
<td>~70% of cases: SCLC, thymoma, breast</td>
<td>Responds well to treatment.</td>
</tr>
<tr>
<td>Anti-GABA(B)R</td>
<td>Limbic encephalitis with severe seizures</td>
<td>~50% of cases: SCLC</td>
<td>Responds well to treatment.</td>
</tr>
<tr>
<td>LGI1</td>
<td>Limbic encephalitis</td>
<td><10% of cases: Thymoma</td>
<td>Responds well to treatment.</td>
</tr>
<tr>
<td>Caspr2</td>
<td>Neuromyotonia +/- CNS involvement</td>
<td>Thymoma</td>
<td>Responds well to treatment.</td>
</tr>
<tr>
<td>Anti-GluR1</td>
<td>PCD</td>
<td>Hodgkin lymphoma</td>
<td>Only a few cases; some improved.</td>
</tr>
<tr>
<td>Anti-GluR5</td>
<td>Limbic encephalitis</td>
<td>Hodgkin lymphoma</td>
<td>Only a few cases; some improved.</td>
</tr>
</tbody>
</table>

References:

Neural proteins expressed on plasma membrane of tumors
Antigens are also expressed in neural cells
Antibodies targeting plasma membrane antigens are effectors of injury

Neuronal Surface/Synaptic Antibodies Pathogenicity: In Vitro

Neuronal Surface/Synaptic Antibodies Pathogenicity: In Vivo

- NMDA encephalitis patients’ CSF → mice
 - Memory deficits
 - Anhedonic
 - Depressive-like behaviours
 - Spares behavioural and locomotor tasks

- Mice brain tissue
 - Progressive increase of brain bound human NMDAR antibodies predominantly in the hippocampus
 - Immunoblot analysis of the hippocampus showed progressive decrease of the density of total and synaptic NMDAR clusters and total NMDAR protein concentration

Anti-NMDA Receptor Encephalitis

Most common and first well characterized cell surface antibody encephalitis
Anti-NMDA Receptor Encephalitis

• Typical clinical course
 – Viral prodrome → neuropsychiatric manifestation → seizures → dysautonomia → dyskinesias and obtundation

• Associated with ovarian teratomas ~ 40 to 50% in young women

• Can affect males, children, elderly

Dyskinesias in Anti-NMDA Receptor Encephalitis

EEG: Extreme Delta Brush
Treatment and Outcome

• Treatment
 – 1st line: Steroids, IVIG, Plasmapheresis
 – 2nd line: Rituximab, Cyclophosphamide
 – Teratoma removal, if present

• Severe clinical course but usually good outcome

Good Outcome = mRS ≤ 2

81% All pts

97% Pts who responded to 1st line immunotherapy

Clinical Outcome

Pts who failed 1st line immunotherapy and did not receive 2nd line immunotherapy

Pts who failed 1st line immunotherapy and received 2nd line immunotherapy

Anti-NMDA Receptor Encephalitis after Herpes Simplex Virus 1 Encephalitis

- Occurs few weeks after HSVE
- Adults
 - Neuropsychiatric/behavioural manifestations
- Children
 - Movement disorders (choreathetosis)
 - Encephalopathy
- MRI shows increased enhancement
- HSV triggers autoimmunity within CNS

Likely to account for previous cases of ‘HSV relapses’
- Acyclovir resistance rare
- Treatment with immunotherapy

Movement Disorders in Anti-NMDA Receptor Encephalitis after Herpes Simplex Virus 1 Encephalitis
Anti-Voltage Gated Potassium Channel (VGKC) Encephalitis

- **VGKC complex antibodies**
 - LGI1 (central)
 - CASPR2 (central, peripheral)

- **Phenotype**
 - Limbic encephalitis, faciobrachial dystonic seizures (LGI1)
 - Issac’s syndrome (CASPR2)
 - Peripheral nerve hyperexcitability/neuromyotonia
 - Morvan’s syndrome (CASPR2>LGI1)
 - Neuromyotonia, pain, hyperhydrosis, weight loss, severe insomnia and hallucinations

Anti-VGKC (LGI1) Encephalitis

• Equal gender distribution

• Hyponatremia is a characteristic feature
 – 30% to 60%
 – SIADH

• Weakly associated with tumors
 – Thymomas, SCLC

Faciobrachial Dystonic Seizures Precedes LGI1 Limbic Encephalitis

Anti-VGKC (LGI1) Encephalitis

- Usually shows good response to early 1st line immunotherapy
 - Steroids, IVIG, plasmapheresis
 - Combination therapy vs monotherapy

Neuronal Surface/Synaptic Antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Neurologic syndrome</th>
<th>Common cancer association</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-NMDAR</td>
<td>Anti-NMDAR encephalitis</td>
<td>Females >12 and <45 years: ovarian teratoma</td>
<td>Characteristic pattern of symptom progression. Partial syndromes or less severe phenotypes can occur; almost all patients develop several elements of the syndrome.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females/males >45 years: rare association with solid tumors</td>
<td>Responds well to treatment; recovery may be prolonged.</td>
</tr>
<tr>
<td>Anti-AMPAR</td>
<td>Limbic encephalitis with prominent psychiatric features</td>
<td>$\sim70%$ of cases: SCLC, thymoma, breast</td>
<td>Responds well to treatment</td>
</tr>
<tr>
<td>Anti-GABA(B)R</td>
<td>Limbic encephalitis with severe seizures</td>
<td>$\sim50%$ of cases: SCLC</td>
<td>Responds well to treatment</td>
</tr>
<tr>
<td>LGI1</td>
<td>Limbic encephalitis</td>
<td>$<10%$ of cases: Thymoma</td>
<td>Responds well to treatment</td>
</tr>
<tr>
<td>Caspr2</td>
<td>Neuromyotonia +/- CNS involvement</td>
<td>Thymoma</td>
<td>Responds well to treatment</td>
</tr>
<tr>
<td>Anti-GluR1</td>
<td>PCD</td>
<td>Hodgkin lymphoma</td>
<td>Only a few cases; some improved</td>
</tr>
<tr>
<td>Anti-GluR5</td>
<td>Limbic encephalitis</td>
<td>Hodgkin lymphoma</td>
<td>Only a few cases; some improved</td>
</tr>
<tr>
<td>Anti-α-GlyR</td>
<td>PERM</td>
<td>Infrequent: thymoma, lymphoma</td>
<td>Responds well to treatment</td>
</tr>
</tbody>
</table>

Autoantibodies Detection

Autoantibodies Detection

Autoantibodies Detection

Images courtesy of Euroimmun

GABA$_B$

NMDAR
Challenges: Refining Phenotypes and Antibody Assays

- Sera from over 4,000 healthy and disease controls (schizophrenia, affective disorders, stroke, Parkinson disease, amyotrophic lateral sclerosis, personality disorder) tested for neuronal surface and intracellular-targeted antibodies

- NMDA
 - Seroprevalence similar in disease and healthy controls
 - 11% positive [IgM (6 %), IgA (5 %) and IgG (1%)]
 - Titres from 1:10 to 1:1,000

- Amphiphysin (2.0%), CASPR2 (0.9%), MOG (0.8%), GAD65 (0.5%), Ma2 (0.5%), Yo (0.4%) and Ma1 (0.4%), also with similar frequencies in disease and healthy controls

- Implications
 - Antibody testing needs to be interpreted in the appropriate clinical context
 - Standardization of assays/detection threshold

Challenges: Defining Specific Antigenic Targets and Pathogenesis

• VGKC antibodies lacking LGI1 and CASPR2
 – Creuzfeld Jacob disease
 – VGKC-complex antibodies (amongst others) are generated in abattoir workers after exposure to aerosolized porcine neural tissue
 – Likely reflects secondary antibody production against other parts of the VGKC complex

• More studies to prove antibody-mediated pathogenicity

Conclusion

• Exciting developments
 – Paradigm shift in the diagnostic approach of encephalitis
 – Important implications for epilepsy, psychiatry and cognitive sciences

• Challenges ahead
 – Pathogenesis, immunological mechanisms
 – Assay standardization
 – Treatment standardization